Humulene Triepoxide

By Peter Murray-Rust and Judith Murray-Rust

Department of Chemistry, University of Stirling, Stirling FK9 4LA, Scotland

(Received 1 August 1977; accepted 17 August 1977)

Abstract. $C_{15}H_{24}O_3$, $M_r = 252.34$. Monoclinic, space Å, $\beta = 121.11$ (5)° from diffractometer measurements group C2/c, a = 36.98 (4), b = 8.72 (4), c = 21.25 (2) (Mo $K\bar{\alpha}$ radiation); V = 5867.5 Å³, Z = 16, F(000) =

Table 1. Fractional atomic coordinates and thermal parameters ($\times 10^4$)

The expression for the anisotropic temperature factor is $T = \exp[-2\pi^2(h^2a^{*2}U_{11} + \cdots + 2k/b^*c^*U_{21})]$.

	.X	c	У		Ζ	U_{11}	U22	U_{33}		U_{23}	U_{13}		U_{12}	
O(1A)	3672	(2)	4661 (7)	15	63 (3)	815 (37)	1003 (49) 679 (35)) -14	2 (35)	586 (3	32)	94 (35)	
O(2A)	4426 (2) 489 (489 (7)	12	80 (4)	1080 (49)	602 (47) 1399 (56	36	3 (42)	798 (4	15)	324 (40)	
O(3A)	4618 (2)		6206 (7)	213 (3)		971 (43)	639 (43	917 (42) 12	0 (35)	708 (3	37)	76 (34)	
O(1B)	6347(1)		7136 (6)	1009 (2)		551 (30)	551 (30) 678 (40)		-22(28)		236 (24)		66 (28)	
O(2B)	7461 (1)		3951 (6)	2838(3)		590 (32)	563 (41) 643 (34)	-12	7 (30)	239 (2	27)	222 (29)	
O(3B)	6899	- (i)	8680 (6)	39	78 (2)	657 (32)	634 (39) 472 (29)) -6	3(29)	355 (2	26)	50 (29)	
Molecule A								,	Molecule <i>B</i>				00(2))	
	x y			Ζ		$U_{\rm irr}$		х		v z			U.	
C(1)	2000	()	5120 (10)	1	204 (4)	502 (22)		(542 (2)	7740		1762	(1)	400 (10)	
C(1)	3900(2)		3844 (0)	3129(10) 1394 2844(0) 1007		525 (22)		6428 (2)	6122	2 (0)	1/55 ((3)	408 (18)	
C(2)	3885 (2)		2255 (10)	1007(4)		525 (20) 650 (23)		6707 (2)	5022) (9)) (9)	1010 ((4)	415 (18)	
C(3)	3003(2)		1736 (0)) 1239 (4)		557 (23)		7060 (2)	3022	2 (0)) (0)	2602	(4)	4/8 (19)	
C(5)	4140 (2)		1052 (10)	1208 (4)		569 (22)		7000(2)	54952	(0)	2002 ((4)	430(19)	
C(5)	4005 (2)		2104(0)	052 (4)		527 (21)		7449 (2)	5740	(9)	2009	(3)	397 (18)	
C(0)	4009 (2)		3791 (10)	$) \qquad 952(4) \\ 0 \qquad 016(4)$		607 (20)		7042(2)	7260	+ (0)) (9)	3908 ((3)	403 (18)	
C(3)	4737 (2)		3791 (10) 4787 (0)	510 (4)		517 (20)		7018 (2)	7505	(0)	4012 ((3)	431 (18)	
C(0)	4574 (2)		6275 (0)	705(4)		542 (20)		7048 (2) 6824 (2)	9007 (9)		3034 (3)		381 (18)	
C(0)	4082 (2)		6951 (10)	514(4)		652 (21)		624(2)	9007	7 (9)	3239 ((4)	431 (18)	
C(10)	4082 (2)		6731 (10)	1088(4)		700 (25)		6292 (2)	8947 (10)		1072	(4)	508 (20)	
C(12)	3344 (3)		3000 (10)	244(4)		684 (24)		6062(2)	5/10	(10)	1506 ((4)	598 (22)	
C(12)	3340 (3) 4870 (3)		6964(12)	1502(5)		004 (24)		7057(3)	10424		3776 ((4)	753(24)	
C(13)	4670 (3)		1360 (10)	1302(3)		646 (24)		7503 (2)	4520	(11)	4254 ((J)	545 (21)	
C(15)	5290	(2)	1283 (11)	1.	150 (4)	851 (28)		8124 (2)	5677	(9) (0)	4234 ((4)	576 (21)	
Hvdrogen at	tom para	meters.	E.s.d.'s are	approxi	mately 2	5. 100 and 4) in r. v and	z respectively	5010	())	4200 ((ד)	570 (21)	
	Molecule A Molecule R								Molecule A Molecula P					
	r		7	r	v	7		r	,,	~	~	woiecu	-	
	~	<u>_</u> v	2	л	y	2		л	У	2	х	y	Z	
H(1)	4276	4893	1773	6854	8107	1977	H(13)	3285	5048	106	5978	4570	1282	
H(2)	3664	1551	1027	6969	5628	1633	H(14)	3132	3230	175	6166	4805	2169	
H(3)	4106	2239	1728	6646	3943	1581	H(15)	3455	3662	-199	5844	6152	1487	
H(4)	3965	1708	308	6889	4189	2826	H(16)	4854	6354	1852	7092	10307	2810	
H(5)	4 /40	2622	1820	/541	6265	2836	H(17)	4907	7583	1359	7337	10264	3673	
H(6)	5068	4174	675	/639	8087	3766	H(18)	5191	6486	1606	6884	11086	3200	
H(/)	5128	4148	1411	/631	/556	4580	H(19)	4616	367	215	7197	4491	4126	
H(8)	4314	4197	222	6865	6537	3504	H(20)	4402	1992	-220	7560	3533	4178	
H(9)	3805	6206	41	6278	1131	2772	H(21)	4847	1588	-152	7639	4601	4842	
H(10)	4083	/963	385	0189	9653	2/33	H(22)	5427	1663	1948	8221	4550	4206	
H(11)	3634	6964	/98	6391	10052	1802	H(23)	5456	1527	1185	8211	6343	3964	
H(12)	4137	7311	1492	5999	8576	1603	H(24)	5229	-25	1418	8256	5849	4789	
Isotropic ten	nperature	e factors	$U_{\rm iso} imes 10^4$)		Mala	oule A	Molecule P						
		wolecule A w						MOIECUIE D						
			H(1)–(12) H(13)–(24)		6 9	84 54	496 723							

3931

2208, $\mu = 0.44$ cm⁻¹, $D_c = 1.16$ g cm⁻³. The crystals contain two molecules per asymmetric unit, with identical conformations.

Introduction. The title compound (I) was recrystallized as needles, m.p. 125°C.

Systematic absences (from precession photographs) hkl for h + k odd, h0l for l odd indicated space group C2/c. Data were collected for h0-6l with $\theta_{max} = 22.5^{\circ}$ on a Stoe STADI-2 two-circle diffractometer (graphitemonochromated Mo $K\bar{a}$ radiation). There were 2719 unique data, of which 1760 with $I > 3\sigma(I)$ were used in subsequent calculations. Lorentz and polarization corrections (but none for extinction or absorption) were applied and the data scaled by a Wilson plot. The structure was solved by direct phasing methods with the SHELX-76 program (Sheldrick, 1976). Complex neutral atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). H atoms were located from difference maps and given isotropic temperature factors which were allowed to refine. Only O atoms were refined anisotropically. Fullmatrix least-squares refinement (unit weights) con-

 Table 2. Molecular geometry

В A В A C(6) - C(7)C(1) = O(1)1.45 1.46 1.52 1.54 -C(2) 1.44 1.45 ·C(14) 1.53 1.52 C(11) 1.51 1.53 -C(15) 1.56 1.54 C(2) O(1) 1.46 1.45 C(7) - C(8)1.50 1.51 1.49 -C(3) 1.52 C(8) - O(3)1.48 1.46 -C(12) 1.50 1.51 C(9) 1.47 1.46 C(3) - C(4)1.53 1.51 C(9) - O(3)1.47 1.43 C(4) O(2) 1.42 1.43 -C(10) 1.51 1.51 -C(5) 1.46 1.46 -C(13)1.51 1.52 C(5) -O(2) 1.43 1.45 C(10) - C(11)1.55 1.55 -C(6)1.52 1.53 (b) Bond angles (°). E.s.d.'s are $5-8 \times 10^{-1}$ (°). A В A В C(2) C(1) C(11) 125.8 125.1 C(5) - C(6) - C(7)108.9 107.6 O(1)60.8 59.9 -C(14) 113.6 112.3 C(11) --O(1) 115.4 116.3 -C(15) 108.2 106.8 C(1) C(2) -C(3) 119.1 117.3 C(7)-110.8 -C(14) 111.8 C(1) -C(12) 121.9 123.4 107.9 -C(15)108.8 59.9 60.2 -O(1) C(14)--C(15)107.2 109.4 C(3) C(12) 115.8 C(6) - C(7) - C(8)115.1 114.8 113.4 $\cdot O(1)$ 112.8 112.0 C(7) - C(8) - C(9)124.2 124.4 C(12) O(1) 113.3 116.0 -O(3) 116.7 116.8 C(2) ·C(3) C(4) 112.0 112.3 C(9)--O(3) 59.4 58.8 C(3) -C(4) C(8) - C(9) - C(10)C(5) 120.8 120.8 117.8 119.0 O(2)114.7 115.4 -C(13)122.2 121.7 C(5) O(2) 59.2 60.1 -O(3)59.4 60.5 C(4) C(5) C(6) 124.8 125.6 C(10)--C(13)116.8 115.7 O(2) 59.1 59.2 -O(3)111.4 113.3 C(6) -O(2) 117.6 117.7 C(13) --O(3) 114.4 113.2 C(9) - C(10) - C(11)113.4 114.3 C(10) - C(11) - C(1)113.1 112.4 C(1) - O(1) - C(2)59.3 60.0 C(4) - O(2) - C(5)61.7 60.8 C(8) - O(3) - C(9)61.2 60.7

(c) Ring torsion angles (°). The values found in humulene diepoxide by Cradwick, Cradwick & Sim (1973) are given for comparison (CCS).

	A	В	CCS		A	В	CCS
C(11) C(1) C(2) C(3) C(1) C(2) C(3) C(4) C(2) C(3) C(4) C(5) C(3) C(4) C(5) C(6) C(4) C(5) C(6) C(7)	156 82 93 154 99	-158 80 -96 153 -99	153 73 89 169 106	$\begin{array}{c} C(6)-C(7)-C(8)-C(9)\\ C(7)-C(8)-C(9)-C(10)\\ C(8)-C(9)-C(10)-C(11)\\ C(9)-C(10)-C(11)-C(1)\\ C(10)-C(11)-C(1)-C(2) \end{array}$	-134 157 -106 55 74	-142 156 -101 53 80	-123 157 -109 52 80
C(5) C(6) - C(7) C(8)	56	60	47				

(a) Bond lengths (Å). E.s.d.'s are all 1×10^{-2} Å.

verged at R = 0.075 for 1760 observed reflexions ($R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$). In the final cycle all shifts in parameters were less than their standard deviations. Atomic parameters are given in Table 1 and the molecular geometry in Table 2.*

Discussion. As part of a study of sesquiterpenoid transformations the crystal structure of (I) was undertaken to check the stereochemistry of the products from epoxidation of humulene (Parker, Roberts & Mitra, 1977). The observed structure (Fig. 1) is consistent with NMR data and has a very similar conformation to the related 1,2-8,9 diepoxide (Cradwick, Cradwick & Sim, 1973) from which it can be synthesized. The two molecules of (I) in the asymmetric unit have identical conformations and differ only slightly from the diepoxide [see Table 2(c)] and from the silver nitrate adduct of humulene (McPhail & Sim, 1966). This constancy of conformation supports the suggestion of Cradwick, Cradwick & Sim (1973) that humulene, although a liquid at room temperature, has a preferred conformation.

References

CRADWICK, M. E., CRADWICK, P. D. & SIM, G. A. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 404–407.

Fig. 1. General view of the molecule.

- International Tables for X-ray Crystallography (1974). Vol. IV, p. 99. Birmingham: Kynoch Press.
- McPhail, A. T. & Sim, G. A. (1966). J. Chem. Soc. B, pp. 112–116.
- PARKER, W., ROBERTS, J. S. & MITRA, A. (1977). Unpublished work.
- SHELDRICK, G. M. (1976). SHELX-76 program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1977). B33, 3933-3936

A Neutron Diffraction Study of Lanthanum Magnesium Nitrate La₂Mg₃(NO₃)₁₂.24H₂O

By M. R. Anderson,* G. T. Jenkin† and J. W. White†

Physical Chemistry Laboratory, Oxford University, Oxford OX1 3JP, England

(Received 1 June 1976; accepted 3 August 1977)

Abstract. La₂Mg₃(NO₃)₁₂.24H₂O, trigonal, $R\bar{3}$ (C_{3i}^2), a = 13.172 (3) Å, $\alpha = 49.29^{\circ}$, 23°C, FW 1527.18, Z = 1, V = 1207 Å³, $D_c = 2.101$ g cm⁻³ [hexagonal, a = 10.989 (2), c = 34.63 (1) Å, Z = 3, V = 3621 (2) Å³]. The non-hydrogen atom positions were similar to those found in the corresponding cerium double salt whereas some differences were found with the H positions. A hydrogen-bonding scheme is proposed in which seven H atoms form single bonds and one forms a weak bifurcated bond.

Introduction. Lanthanum magnesium nitrate hydrate (LMN) is of great importance as a proton spinpolarized target in both nuclear physics and polarized

^{*} A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32936 (12 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, England.

^{*} Present address: Materials Physics Division, AERE Harwell, Oxfordshire OX11 0RA.

[†] Present address: Institut Max Von Laue-Paul Langevin, 38042 Grenoble CEDEX, France.